If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x-48=0
a = 1; b = -7; c = -48;
Δ = b2-4ac
Δ = -72-4·1·(-48)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{241}}{2*1}=\frac{7-\sqrt{241}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{241}}{2*1}=\frac{7+\sqrt{241}}{2} $
| 4x+73=289 | | 12x-8-6x+44=180 | | 8(7-x)+2=-46 | | -26+5x=-5x+2(-2x+1) | | 3x+241=274 | | x÷(-15)=11 | | x+50+4x+25=180 | | Y+7y=12 | | 2*(x-15)=-10 | | 8(a-2)=24-2a | | 2x+118=276 | | y−12=20 | | (x−5)10+(1−2x)5=(3−x)4 | | (z+4)/2+(2z+1)/5=13 | | (y+2)/(y+6)=3 | | 5r+40=-3r-7(5+r) | | -(2x+7)=-7-x | | 3y+12=5y-28 | | k/–3+–19=–16 | | 2t+(-11)=-15 | | 2x+36/7=8 | | -16-2m=-7(-m-8) | | 2x+36=8/7 | | 3x–8=–2x+22 | | (X)(x+1)=(x-1)(2x) | | g-27=62 | | -3-7a=-3(a+5) | | x=0.2(5-x) | | 3x+19=99-7x | | -b/5-7=-21 | | 40=-16t^2+40t+10 | | 90=x+2x-21 |